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In this paper we study the inviscid instability of a skewed compressible mixing layer 
between streams of different velocity magnitude and direction. The mean flow is 
governed by the three-dimensional laminar boundary-layer equations and can be 
reduced to a sum of a uniform flow and a two-dimensional shear flow. In the stability 
analysis, the amplification direction is assumed to be normal to the homogeneous 
direction of the mean flow. The results show that skewing enhances the instability by 
a factor of three for the incompressible mixing layer with velocity ratio 0.5 and uniform 
temperature. Under compressible conditions, skewing still increases the maximum 
amplification rate for a medium convective Mach number, but the enhancement is 
smaller. A scaling of the skewing effect is introduced which quantitatively explains the 
linear stability behaviour. Similarly, a suitably defined convective Mach number 
explains the compressibility effect. 

1. Introduction 
There are numerous aerodynamic situations in which a mixing layer is three- 

dimensional instead of being the frequently studied idealization of a two-dimensional 
one. For example, the initial spreading of a swirling jet involves a three-dimensional 
mixing layer. It occurs over the surface of a jet plume issuing from a surface into a 
mainstream. The vortex sheet rolling up from a slender delta wing at incidence and 
most three-dimensional boundary-layer separations involve complex mixing layers. In 
many practical flows, the effects of pressure gradients, flow curvature and three- 
dimensional mean flow occur simultaneously, making it difficult to interpret the 
individual effects. In this paper, we isolate the skewing effect and examine the inviscid 
instability of the skewed compressible mixing layer, which forms between two streams 
with different directions, velocity magnitudes and temperatures. 

Both experimental (e.g. Brown & Roshko 1974; Papamoschou & Roshko 1988) and 
computational (e.g. Ragab & Wu 1988; Lele 1989; Sandham & Reynolds 1989; 
Jackson & Grosch 1989) studies show that flow stability increases at high convective 
Mach numbers. If a mixing-layer configuration is used to mix fuel and oxidizer, this 
increased stability may result in poor mixing leading to partial burning and decreased 
combustion efficiency. For a supersonic combustion application, good mixing is 
essential to a feasible design. Skewing the two streams may enhance the mixing. To 
date, experiments regarding this flow are very limited. Hackett & Cox (1970) conducted 
experiments on the turbulent mixing between two grazing perpendicular streams. 
Unfortunately their experiments were restricted to only one value of the skewing angle, 
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FIGURE 1. Top view of velocity vector (u, w) for a skewed mixing layer. 

namely 90°, and they compared this skewed mixing layer with a plane mixing layer with 
zero velocity ratio. In such a comparison the effects of skewing and different velocity 
ratio occur together. The present work isolates the skewing effect from the effects of 
velocity ratio, density ratio and flow compressibility. Our results of the skewing effect 
on incompressible mixing layers agree very well with the experimental results of 
Hackett & Cox. Another experimental study has been initiated recently by Grundel & 
Fiedler (1 992). Flow visualizations and preliminary measurements in a mixing layer 
with equal but oppositely skewed free streams have been reported. This configuration 
is similar to that used by Hackett & Cox but with a different skewing angle, namely 30°, 
and vortex generators at the trailing edge are used to disturb the mixing layer. Helical 
vortex structures which exhibit a spanwise merger have been reported. 

The instability of a skewed compressible mixing layer has not been studied in detail, 
one exception being a recent study by Grosch & Jackson (1991). They formulated the 
mean flow equations and performed linear stability analysis on idealized mean flow 
profiles. They also assumed that the amplification direction of the instability waves is 
the same as the propagation direction. Macaraeg (1991) has extended the analysis of 
Grosch & Jackson to consider bounded free shear flows and has also performed 
numerical simulations for the temporal problem. In this paper we consider a different 
situation: the instability growth in a skewed mixing layer possessing a homogeneous 
direction. The mixing layer downstream of a splitter plate is homogeneous in the 
direction of the splitter plate edge. When the splitter plate edge receptivity is dominant, 
the spatial amplification of instability waves occurs in the direction normal to the 
imposed homogeneous coordinate. 

To identify the skewing effect, the maximum spatial amplification rate of the skewed 
mixing layer is compared with that of the corresponding unskewed mixing layer. The 
exact effect of skewing is compared with a geometrically derived scaling of the skewing 
effect. This comparison shows that skewing has the simultaneous effect of increasing 
the effective velocity ratio, which is a destabilizing effect, and increasing the effective 
convective Mach number, which is a stabilizing effect. For the incompressible mixing 
layer with velocity ratio 0.5 and uniform temperature, skewing enhances the instability 
growth rate by a factor of three. Under compressible conditions this enhancement is 
moderate with the effect decreasing with increasing convective Mach number. 

In Q 2 the three-dimensional boundary-layer equations are solved and reduced to a 
sum of a uniform flow and a two-dimensional shear flow. Section 3 contains inviscid 
compressible stability equations and some relations of the wavenumbers and 
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frequencies of the skewed mixing layer and its equivalent two-dimensional flow. 
Section 4 gives the numerical results showing the effects of skewing and compressibility. 
Scaling which isolates the skewing effect is also presented in this section. Section 5 
follows with further discussion and the final section presents our conclusions. 

2. Mean flow 
We consider a skewed compressible mixing layer, which separates two streams of 

different velocity magnitudes and directions and different temperatures. We choose the 
y-coordinate normal to the layer, and assume that there is a homogeneous direction 
chosen as the z-coordinate so that a/az = 0 for the mean flow. The pressure gradient 
is assumed to be zero and the fluid is a perfect gas with constant specific heats. The 
mean flow is governed by the three-dimensional compressible boundary-layer 
equations 

apu apv -+- = 0, 
ax ay 

au au I a au 
pu-+pv- = -- p- 

ax ay Reay( ap), 

aw a w  I a aw 
ax ay ReaJ ay)’ 

pu-+pv- = -- p- 

(2.1 a) 

(2.1 b) 

(2.1 c)  

- 1) p [ ($J + (31, (2.1 d )  
aT aT 1 a pu-+pv-- = -- 
ax ay RePray(’%+ Re 

pT= 1, (2.1 e) 

where all the variables are non-dimensionalized using the magnitudes of the fast- 
moving free stream, and the reference lengthscale is, for the time being, an arbitrary 
constant. A suitable choice of the lengthscale will be made later. In the above equations 
(u,v, w) are the velocity components in the (x,y,z)-directions, p the density, T the 
temperature.The dynamic viscosity y is assumed to be only a function of temperature. 
The ratio of specific heats y and the Prandtl number Pr are assumed to be constant, 
and the Mach number M and the Reynolds number Re are defined using the fast- 
moving-stream reference values. The boundary conditions are 

u( + co) = cos $h1, u( - co) = u, cos $b2, (2.24 

(2.2b) 

T(+co) = 1, T(-m) = G, (2.24 

w( + 00) = sin q517 w( - co) = U, sin #2, 

where U, is the velocity ratio and is assumed, without loss of generality, to be not larger 
than unity, and T,  is the temperature ratio. As shown in figure 1, the skewing angles 
of the high- and low-speed streams measured clockwise from the x-axis are q51 and #,, 
respectively, and 

is the relative skewing angle of the slow stream with respect to the fast stream. 

q5 = $2-91 (2.3) 

We introduce the Howarth transformation (Schlichting 1979) 

Y =  pdy, V = p v + u r @ d y  I 0 ax 
(2.4) 
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to transform the mean flow equations into the incompressible form 
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au av 
ax ay 
-+- = 0, 

aT aT 1 a ,uaT M 2 ( y - - 1 ) p  au I 
ax 

u-+ v- = ~- _- 
aY RePraY(TaY)+ Re ?-[(%I (SF)?+]’ 

p T =  1. 

We then seek similarity solutions in terms of 

and of the form 

7 = Y(Re/x)i 

u =f’(r), v =  - 1 (rf’-f>, w = 8(11), T = Nr). 1 
2(Re x)x 

( 2 . 5 ~ )  

(2.5b) 

(2.5 c)  

(2.5 d )  

(2.5e) 

(2.6) 

(2.7) 

Substituting (2.7) into (2.5) and assuming that viscosity is a linear function of 
temperature, we obtain 

2 f + T  = 0, (2 .8~)  
2g“ +fg’ = 0, (2.8b) 

(2.8 c) 

Equation ( 2 . 8 ~ )  is decoupled from (2.8b) and ( 2 . 8 ~ )  and can be solved for$ Equations 
(2.8b) and ( 2 . 8 ~ )  suggest solutions of the form 

2 
-h”+fh  = - 2 M 2 ( y -  1)(f”2++’2). 
Pr 

g = g(u), h = h(u). (2.9) 
Substituting (2.9) into (2.8b) and using the boundary conditions (2.2) yields 

where 

U, sin $ 
w = utan?,k+ 

cos (bl - u, cos (i5, ’ 

sin dl - U, sin (b, 
tan@ = 

cos - u, cos 4,. 

(2.10) 

(2.1 1) 

Note that the (x ,  z )  projection of the velocity vector (u, w) lies on a straight line with 
an angle @ from the x-axis. This geometric property of the similarity solution is shown 
in figure 1. It is convenient to re-express the velocity (u, w), where w is given by (2.10), as 

u = z?cos$+U,,, w = $sin$+ W,, (2.12) 

where U, sin q5 
W, = U,tan$+ 

cos - u, cos q5, ’ (2.13) 

and ii =y(q) is given by 

If we choose V,  and W, such that 

2 p + ~ c o s ~ + u o ? ) ~  = 0. (2.14) 

U, = cos - cos $, W, = sin -sin $, (2.15) 
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then the boundary conditions for u" become 

ii(+co) = 1, ii(-co) = 0, = l-(l-2U,cos$+U,2)~. (2.16) 

The vorticity thickness for the two-dimensional mixing layer can be defined as 

(2.17) 

where the asterisk represents dimensional variables. Similarly, for the skewed mixing 
layer, we may define vorticity thickness for the u and w velocity components as (for 
$1 * 0 or $2 * 0) 

(2.18) 

Since u, w, and ii have linear relations, we have 

8; = &* = 8" (2.19) 

The 'momentum' thickness for the two-dimensional mixing layer is also often used 

wu ww, 

which is chosen as the characteristic lengthscale from here on in this paper. 

and is defined as 

s; = (1 - i i ) ( J -  fi,)dy*. (2.20) 

A similar definition of the momentum thickness for the skewed mixing layer is 

8ZW = (sin$l-w)(w- u,sin$,)dy*, (2.21b) 

which also satisfies 
8; = 8LU + 82,. (2.22) 

If the Prandtl number is assumed to be unity, substituting (2.9) and (2.10) into (2.8 c) 
yields an equivalent Crocco-Busemann relation 

T =  l)[(COS + u, cos 4,) 24 - 2.42- u, cos cos 
2 cos2 $.h 

(2.23) u-u2cos$, 
- u,cos $ z  cos 4, - u,cos $ z  ' 

+ T,(cos $1 - 4 
+cos 

which in terms of the velocity ii takes the simpler form 
I 

G(1-22) ii-u, 
1-0, 1-u,  

T = ;M2(y -  1) [(I + a,) ii-ii2- U2] + +- (2.24) 

Thus, an appropriate transformation reduces the three-dimensional mean flow to a 
two-dimensional flow with the same Reynolds number, Mach number and temperature 
ratio, but different velocity ratio o,, plus a uniform flow (U,,, W,) satisfying (2.15). 

Since a skewed mixing layer is equivalent to the sum of a uniform flow and a plane 
shear flow, the effective convective Mach number for the skewed mixing layer can be 
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defined as the convective Mach number of the plane shear flow component. The 
definition of a convective Mach number which is frequently used for a plane mixing 
layer is (for y1 = yz) 

M ,  
M e = - -  - 1-O2 - ( l - 2 u z c o s ~ + u , 2 ) ~  

a, +a2 1 + 2  
(2.25) 

where a, and a2 are the sound speeds of the fast- and slow-moving streams, 
respectively. This definition was used to collapse the available growth rate data from 
experiments (Bogdanoff 1983; Papamoschou & Roshko 1988; also see Dimotakis 1991 
for a review). Sandham & Reynolds (1990) also use this definition to rescale their linear 
stability results. This effective convective Mach number plays an important role in 
studying the compressibility effect on mixing layers. 

3. Linear inviscid stability problem 
In the linear stability analysis, we perturb the flow field with small wave disturbances 

in the velocity, temperature, density and pressure with amplitudes which are functions 
of y .  For example, variable f can be decomposed as 

(3-  1) 
wherefis the mean value,fthe amplitude of the disturbance, o the frequency and a and 
p the wavenumbers in the streamwise (x) and spanwise (z) directions, respectively. 

The magnitude of the real part of the wavenumber k, and the propagation angle 0 
are given by 

where the subscript r denotes the real part of a complex number. For the temporal 
stability problem, disturbances grow in time and not in space so a and /3 are real and 
w complex with wi the temporal amplification rate, where the subscript i denotes the 
imaginary part. In the spatial problem, disturbances grow in space and not in time, so 
w is real and both a and ,8 are complex for a general perturbation such as that evolving 
from a localized initial disturbance. In this paper, however, we assume that the 
disturbance is periodic in the z-direction, which is a homogeneous direction for the 
mean flow, so the disturbance does not amplify for z + & a, or pi = 0. Therefore, the 
spatial amplification rate is -ai, and if -ai > 0 and Briggs' criteria on amplifying 
waves (Briggs 1964) is satisfied, then the disturbance is spatially unstable. 

Substituting (3. I) into the linearized Euler equations yields the ordinary differential 
equations for the perturbation amplitudes p and 6 : 

f = f+ Re {f( y) exp [i(ax + pz - 411,  

k: = a," + p,", tan 8 = /3,/a,, ( 3 4  

(3.3a) 

where 
and 

g = (aa + p2) T -  M2(au + /3w - w)', 

p = p / p :  u,*z 
is a dimensionless pressure disturbance. When M =k 0 it follows that 

and the incompressible limit M +  0 is naturally obtained from (3.3). 
Following Gropengiesser (1 970), we define a new variable x : 
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dX 
dY 

au + /3w - w 

T 
gX + a(du/dy) + /3(dw/dy) 

au + pw - 0 
x, - - which satisfies - - 

and whose boundary conditions are 

Substituting the equivalent two-dimensional mean flow (2.12) and (2.15) into the 
above equations yields 

(3.10a) 

g = ( d 2 + p )  T-M2(Zu"-d)2, (3.10b) 

( 3 . 1 0 ~ )  

and di = acos$+Psin$, (3.11~) 

p=- -a sin $ +pcos $, (3.1 1 b) 

d = w - a(cos - cos $) -/?(sin - sin $), (3.11~) 

where G is the Doppler-shifted frequency and d and p are the wavenumber components 
in the directions parallel and normal to u", respectively. Since Gi may not be zero, the 
spatial problem for a skewed mixing layer does not reduce to that of an unskewed 
mixing layer. Similarly, the magnitude of the real part of the wavenumber and the 
propagation angle 8 are given by 

ff: = +@:, tan 8 = Pr/di,, (3.12) 

which satisfy f ,  = k,, e" = e+$. (3.13) 

The complex first-order ordinary differential equation (3.8) is subject to two real 
restrictions from the boundary conditions (3.9). For the temporal problem, a and p are 
real and w is complex, so there is a total of four real numbers, leaving two degrees of 
freedom, which may be chosen as the magnitude of the wavenumber k, and the 
propagation angle 8. Also note that the three-dimensional temporal problem reduces 
to an equivalent unskewed problem. 

In a general spatial problem, where w is real and both a and p are complex, there are 
five real numbers and thus three degrees of freedom, which may be chosen as the 
frequency wr, the propagation angle 8 and the amplification angle tan-' &/a,). Grosch 
& Jackson (1991) chose the amplification angle to be the same as 0. In this paper, 
however, since the z-direction is homogeneous, we assume that the growth is only in 
the x-direction, i.e. Pi = 0. 

If (x, a,P, o) satisfies the eigenvalue problem (3.8) so does (-x*, --a* 3 - p * Y -w*), 
where now the asterisk represents the complex conjugate. This allows o to be restricted 
to positive real values in the spatial stability problem. 

The stability equations are solved using the numerical scheme (shooting method) 
described in Sandham & Reynolds (1989). Using the converged eigenvalues found from 
(3.8), the eigenfunctions are calculated by integrating the linear equations (3.3) from 
the centreline into the free streams. Initial conditions are calculated from the solution 
for ~(0 ) .  Therefore, (3.3) can be used to solve the eigenfunctions for both compressible 
and incompressible flows. 

w -  
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4. Scaling of skewing effect 
To isolate the effect of skewing, the linear stability results of the skewed mixing layer 

are compared with the corresponding results for the unskewed mixing layer with the 
same free-stream velocity magnitudes and temperatures. From both experiments (e.g. 
Abramowich 1963; Sabin 1965; Brown & Roshko 1971, 1974; Brown 1974; 
Papamoschou & Roshko 1988) and linear stability analysis (e.g. Monkewitz & Huerre 
1982), it was found that the growth rate of a plane mixing layer can be estimated by 
using simple combinations of the free-stream quantities (see Dimotakis 1991 for a 
review). In this section, similar parameters are defined that can be used to scale the 
growth rate of the skewed mixing layer. 

For incompressible plane mixing layers, the convection velocity U, can be estimated 
by (see Dimotakis 1986 for details) 

e+ u, 
e + 1  

U,=-, (4.1) 

and the growth rate of a plane mixing layer can be estimated by the ratio of the velocity 
difference AU to the convection velocity Uc 

For the skewed incompressible mixing layer, it is reasonable to define a similar 
effective velocity ratio. The (x, z) components of convection velocity ( U,,, UC)  can be 
estimated as 

Ti  cos + U, cos $, 
4, = 

T i +  1 
3 

T\ sin + U, sin $2 
uc, = , 

f i + l  

(4.34 

(4.3 b) 

where the x-direction is the growth direction. The velocity difference is that of the 
effective shear, i.e. shear due to the two-dimensional mixing-layer component of the 
mean flow 

Since the z-direction is assumed to be homogeneous, the skewed mixing layer spatially 
grows along the x-direction. Therefore, only the x-component convection velocity Uc, 
affects the spatial growth rate of the mixing layer, and the effective velocity ratio can 
be defined as 

AU = (1-2UZcosq5+ U$. (4.4) 

A = - =  AU (1 -2U,cos$+ U,")i(T:+ 1) 
UC, T i  cos + U, cos $2 

, (4.5) 

which increases with the skewing angle q5. Later, this ratio is compared with the 
normalized linear stability results of the incompressible skewed mixing layer. 

For compressible plane mixing layers, Papamoschou & Roshko (1988) found that 
the growth rate is well represented as a function of only the convective Mach number, 
when it is normalized by the corresponding growth rate of the incompressible mixing 
layer with the same velocity and temperature ratios. Linear stability analysis (Ragab 
& Wu 1988; Sandham & Reynolds 1989) shows this to hold for the maximum 
amplification rate normalized by that of the corresponding incompressible mixing 
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FIGURE 2. Contours of constant amplification rate lail in the (w,  @-plane in polar coordinates for 
incompressible mixing layers with U, = 0.5, T, = 1 : (a) q5 = 0" (lailmax = 0.128), (b) 9 = 30" (Jailmax = 
0.166), (c)  q5 = 60" (/ailmax = 0.267), ( d )  q5 = 90" (IaJmax = 0.445). (The angular coordinate 6 is 
measured from the w-axis and increases in the clockwise direction. Contour increment for all plots 
is 0.01 and the outermost contour is neutrally stable.) 

layer. For the skewed compressible mixing layer, we have defined the effective 
convective Mach number aC in (2.25) and expect that the effective convective Mach 
number is also the only parameter to describe the intrinsic compressibility effect on the 
skewed mixing layer. Therefore, the effective velocity ratio h defined in (4.5) and the 
effective convective mach number ac defined in (2.25) together can give an overall 
estimation of the growth of a skewed compressible mixing layer. 

4.1. Results and scaling of incompressible skewed mixing layers 
For the results in this section, = 0". At zero Mach number, the compressibility effects 
are absent : from the above discussion that the effective velocity ratio increases with the 
skewing angle, relative skewing of the two streams is expected to increase the maximum 
amplification rate. 

For the spatial stability problem, since pi = 0, there are two independent parameters 
which are chosen to be the frequency w and the propagation angle 8. To study the 
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1 a. 
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FIGURE 3. Contours of constant amplification rate [ail in the wavenumber plane. (Conditions and 
legend same as figure 2.) 

overall skewing effect on the incompressible mixing layer, we show contours of 
constant spatial amplification rate - tci in the (w, 0)-plane in polar coordinates and in 
the wavenumber (ar, ,h',)-plane in figures 2 and 3, respectively. Contours of constant w ,  
also in the wavenumber plane, are shown in figure 4. For all plots: U, = 0.5, T, = 1, 
and 4 = 0", 30", 60" and 90". Important features of these figures will now be discussed. 

Lees & Lin (1946) showed that if a subsonic regular neutral mode exists in the 
compressible plane mixing layer, its phase velocity must equal the mean velocity at a 
point where 

Using this result, if M = 0, i.e. for incompressible mixing layer, we can show that the 
wavenumber magnitude of the regular neutral mode is constant for different 
propagation angles, i.e. the unstable spatial wave are within a half-circle in the 
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FIGURE 4. Contours of constant frequency o in the wavenumber plane. (Conditions same as 
figure 2, contour increment for all plots is 0.1 and the contour closest to origin is 0.1.) 

wavenumber plane, which is evident in figures 3 and 4. Since ct, /3 and w are all real for 
the neutral mode, Squire's transformation (Drain & Reid 1981) can be used to show 
that the regular neutral mode lies on a circle in the (w,  @plane as evident in figure 2. 

The laminar mean flow of a skewed mixing layer reduces to an unskewed mixing 
layer plus a uniform flow, which results in no shear in a special direction. The 
amplification rate of the wave which travels in this direction is zero. Figures 2 and 3 
clearly show this special direction. 

In figure 2(a), when q5 = O", the contours are symmetric about 6 = 0", and the most 
unstable wave is two-dimensional. For q5 =k 0", the contours are not symmetric, and an 
oblique wave, whose propagation angle 8 is close to $, becomes the most amplified 
wave, i.e. the most unstable wave propagates in approximately the same direction as 
the effective shear. As skewing increases, the angle of the most amplified wave deviates 
from 1/. as shown in figure 5.  
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FIGURE 5 .  Comparison of propagation angle of the most unstable wave with angle of the effective 

shear as a function of skewing angle for incompressible mixing layers with U,  = 0.5 and T, = 1. 

FIGURE 6. Frequency of the most unstable wave as a function of skewing angle for 
incompressible mixing layers with U, = 0.5 and T, = 1. 

In figure 4(a), when the mixing layer is unskewed, the contours of constant 
frequency are almost straight lines parallel to the p,-axis in the wavenumber plane, and 
the distance between these parallel lines is approximately constant, i.e. the disturbance 
wave is almost non-dispersive, and the group velocity, which can be defined as the 
gradient of these contours, is constant and close to the convection velocity. As the 
skewing angle increases, the angle between the contours and the P,-axis increases. The 
direction of the group velocity changes in the same way as the direction of the 
convection velocity defined in (4.3). With large skewing, the contours in figures 
4(c, d )  are no longer straight lines, i.e. the disturbance wave becomes dispersive. 

Figure 4 shows that the lines of constant frequency rotate clockwise as skewing 
increases, while figure 5 shows that the propagation angle of the most unstable wave 
decreases. These two opposite rotations make the frequency of the most unstable wave 
decrease with the skewing angle, shown in figure 6. However, the wavenumber 
magnitude of the most amplified wave does not decrease that much (figure 3). 
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The contour increments for all plots in figure 2 are the same, and it is clear that the 
maximum amplification rate increases with q5. To isolate this skewing effect on the 
amplification rate, we normalize the maximum amplification rate using the 
corresponding value of an unskewed mixing layer with the same velocity ratio and 
temperature ratio. This normalized maximum amplification rate is defined as 

0 -  
5 -  - 

4 -  - 

Figure 7 shows the normalized maximum amplification rate R,  as a function of the 
skewing angle qi for uniform temperature (density), and velocity ratios U, = 0.25, 0.5 
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FIGURE 9. Contours of constant amplification rate IaJ in the (w,e)-plane in polar coordinates for 
compressible mixing layers with M = 1.6, U, = 0.5, T, = 1 : (a) q5 = 0" (lailmax = 0.103), (b) Q, = 30" 
(lailmax = 0.113, (c) q5 = 60" (lailmx = 0.135), (d)  Q, = 90" (lailmax = 0.172). (The angular coordinate 
0 is measured from the o-axis and increases in the clockwise direction. Contour increment for all plots 
is 0.01 and the outermost contour is neutrally stable.) 

and 0.75. The maximum amplification rate increases with the skewing angle, and the 
skewing effect increases with the velocity ratio U,. We also show in the same plot the 
normalized effective velocity ratio R,, normalized in the same way as (4.7), which 
agrees very well with the maximum amplification rate. The increase in the maximum 
amplification rate with skewing can thus be estimated from the increase in the effective 
velocity ratio. 

To examine if this scaling also holds for T,  + 1, the normalized maximum 
amplification rates for U, = 0.5 and T,  = 0.5, 1 and 2 are shown in figure 8. When the 
skewing angle is not very large, the influence of temperature (density) ratio is small and 
the maximum amplification rate is reasonably predicted by the effective velocity ratio 
scaling. For skewing angles q5 larger than 60°, the skewing effect increases with 
decreasing temperature ratio T,, and the maximum amplification rate does not agree 
well with the effective velocity ratio. One reason for this may be the deviation of the 
propagation direction of the most unstable wave from the effective shear direction as 
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FIGURE 10. Contours of constant amplification rate lai[ in the wavenumber plane. 
(Conditions and legend same as figure 9.) 

shown in figure 5. Also recall that waves become dispersive when skewing is large. 
Another reason may be that the convection velocity in (4.3) is not accurate when T,  is 
not very close to one (Dimotakis 1986). 

4.2. Results and scaling of compressible skewed mixing layers 
For compressible mixing layers, skewing increases the effective convective Mach 
number as well as the effective velocity ratio A. Since compressibility stabilizes the 
mixing layer, the skewing effect on the amplification rate is expected to decrease. 

Figures 9 and 10 show contours of constant amplification rate -ai in the (0,s)- 
plane in polar coordinates and in the wavenumber (ar, /$)-plane, respectively. Figure 
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FIGURE 11. Contours of constant frequency o in the wavenumber plane. (Conditions same as 
figure 9, contour increment for all plots is 0.1 and the contour closest to origin is 0.1.) 

11 shows contours of constant frequency w in the wavenumber plane. For all plots: 
M =  1.6, U, = 0.5, T,  = 1, and q5 = 0", 30", 60" and 90". 

In figure 9(a), q5 = 0" and M ,  = 0.4. At this Mach number, the compressibility effect 
is not significant, and the behaviour is quite similar to that of the incompressible 
mixing layer shown in figure 2 (a), although the peak amplification rate is less than that 
of the corresponding incompressible mixing layer. As the two free-streams are skewed, 
the effective velocity ratio increases, which tends to increase the maximum amplification 
rate. However, the effective convective Mach number, and thus the compressibility 
effect, also increases, tending to reduce the maximum amplification rate. As will be 
shown later (figure 15), the net effect of skewing is to increase the maximum 
amplification rate. 

It was found (Gropengiesser 1970; Jackson & Grosch 1989; Sandham & Reynolds 
1989) that for compressible plane mixing layers, the most unstable waves become two 
symmetric oblique waves when the convective Mach number is larger than some 
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(c) 
FIGURE 12. Contours of constant amplification rate [ail in the (w, @-plane in polar coordinates for 
compressible mixing layers with A4 = 3.2, U, = 0.5, T,  = 1 : (a) 4 = 0" (lailmax = 0.0557), (b) q5 = 15" 
(Iailmsx = 0.0560), (c) q5 = 30" (lailmax = 0.0558). (The angular coordinate 0 is measured from the w- 
axis and increases in the clockwise direction. Contour increment for all plots is 0.005 and the 
outermost contour is neutrally stable.) 

critical value. Sandham & Reynolds (1 989) further proposed an empirical relation for 
the angle of the most amplified disturbance as 

M ,  cos B x 0.6. (4.8) 

However, for the skewed compressible mixing layers in figure lO(c) (4 = 60" and 
A?, = 0.69), there are two maxima of the amplification rate, which are not symmetric 
and whose values are not exactly the same. The positions of the two maxima in the 
wavenumber plane are also very different from the plane mixing layer. 

Similar to the incompressible mixing layer, the amplification rate of the wave which 
propagates in the direction perpendicular to the effective shear is zero as shown in 
figures 9 and 10. In figure 11, the frequency contours are straight lines and parallel to 
each other for small skewing angles, and the instability waves become dispersive for 
large skewing angles. 

As the Mach number is increased, the compressibility effect increases. To illustrate 
this change, we show contours of constant amplification rate - ai in the (0, @)-plane 
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FIGURE 13. Contours of constant amplification rate /ail in the wavenumber plane. 

(Conditions and legend same as figure 12.) 

and the wavenumber plane in figures 12 and 13, respectively, and contours of constant 
frequency w in the wavenumber plane in figure 14 for M = 3.2, U, = 0.5, T,  = 1 and 
4 = 0", 15" and 30". In figure 12(a), 4 = 0" and M ,  = 0.8. At this convective Mach 
number, two symmetric oblique waves (0 x k43") are the most unstable waves, and 
their amplification rate is much less than that of the corresponding incompressible 
mixing layer. In figure 14, as the skewing angle 4 increases, to keep with the direction 
of the convection velocity, the lines of constant frequency rotate clockwise, and the 
pattern of the constant amplification rate in figure 13 rotates counterclockwise to 
follow the direction of the effective shear. In figure 12(b, c) the frequency of the most 
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FIGURE 14. Contours of constant frequency w in the wavenumber plane. (Conditions same as 
figure 12, contour increment for all plots is 0.05 and the contour closest to origin is 0.05.) 

unstable wave in the upper quadrant becomes smaller. In the (w ,  8)-plane, the upper 
pattern is squeezed down, while the lower pattern is stretched. 

Previous researchers (Lessen, Fox & Zien 1965, 1966 ; Gropengiesser 1970; Jackson 
& Grosch 1989) have found other instability modes at high convective Mach number 
for the plane mixing layer. Jackson & Grosch (1989) classified these modes as a fast 
supersonic mode (supersonic relative to the low-speed stream) and a slow supersonic 
mode (supersonic relative to the high-speed stream). These supersonic modes also 
occur in the skewed mixing layer (Grosch & Jackson 1991). Figure 12(c) (4 = 30, 
ac = 0.99) shows the supersonic mode, but the most unstable wave happens to be a 
subsonic mode. 
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FIGURE 15. Normalized maximum amplification rate R,  as a function of skewing angle for 

different Mach number; U ,  = 0.5, = 1. 

Figure 15 shows the normalized maximum amplification rate R, as a function of the 
skewing angle 4 for U, = 0.5, T,  = 1 and M = 0, 1.6, 3.2 and 4.8. For medium free- 
stream Mach number, skewing still increases the maximum amplification rate. When 
M = 3.2, i.e. M ,  = 0.8 for the unskewed mixing layer, the maximum amplification rate 
is almost constant with q5. When M >  3.2, skewing decreases the maximum 
amplification rate for small cj. 

To scale this compressibility effect we, instead, normalize the maximum amplification 
rate of the compressible skewed mixing layer using the results from the corresponding 
incompressible skewed mixing layer, that is 

Figure 16 shows the normalized amplification rate R, of the compressible skewed 
mixing layer as a function of the effective convective Mach number ~c for U, = 0.5 
and different Mach number M and temperature ratio T,. All data collapse to the values 
of the plane compressible mixing layer with U, = 0.5 and & = 1 (shown by the solid 
line), indicating that the scaling (4.9) is successful. The lack of collapse for temperature 
ratio T,  + 1 may be due to either an inaccuracy in the estimation of convection velocity 
(4.3) or the fact that f i C  is simply a first-order compressibility parameter (Sandham & 
Reynolds 1990). With this qualification, the compressibility effect on skewed mixing 
layers can be scaled using only the effective convective Mach number. 

is fixed at 0" in the above discussion; if it is also allowed to vary but 
cj as well as U,, T, and A4 are fixed, the effective velocity ratio h in (4.5) can be 
increased. Since the effective convective Mach number kc in (2.25) remains constant, 
further enhancement can still be obtained even for a highly compressible flow. 

Note that 

5. Discussion 
In the previous section, we assumed that the amplification in the z-direction is zero. 

This assumption should be valid if the splitter plate edge is wide enough and 
dominantly excites the unstable waves. To compare our results with the assumption of 
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FIGURE 16. Comparison of the normalized maximum amplification rate R,  of skewed mixing layers 
with that of plane mixing layer as a function of effective convective Mach number M , ;  U, = 0.5. 
(Solid line denotes R, of plane mixing layers with T, = 1 and symbols denote R, of skewed mixing 
layers.) 
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FIGURE 17. Comparison of the amplification rate obtained under the assumptions that the 
amplification direction is the x-direction or the propagation direction for U, = 0.5, T, = 1 :  (a) 
M = 0, q5 = 60" and I3 = -3O", (b) M = 3.2, q5 = 30" and B = 30". 

Grosch & Jackson (1991) that the amplification direction is the same as the 
propagation direction, we show the amplification rates obtained under these two 
assumptions as a function of frequency o in figure 17 for U, = 0.5, T,  = 1, and (a)  
A4 = 0, q5 = 60" and 8 = - 30"; (b) M = 3.2, q5 = 30" and 0 = 30". The assumption 
made by Grosch & Jackson can sometimes substantially overestimate the amplification 
rate. This overestimation can be simply explained by a relation between spatial growth 
rates along different amplification directions (Nayfeh 1980). 

As mentioned before, the only available measurement of skewed mixing layers was 
conducted by Hackett & Cox (1970). Using our convention, for their two-stream case, 
M = 0, U, = T, = 1, # = -45" and #, = 45" (# = 90"); for the single-stream case, 
M = 0, U, = 0, T, = 1 and = 45" (4 = 0). From (4.5), the effective velocity ratios for 
the two-stream cases and the single-stream case are A, = 2 and A, = 2 4 2 ,  respectively. 
Their ratio is 1/2/2 = 0.71. For the single-stream case, Hackett & Cox found that 
skewing the splitter edge has little effect on the two-dimensional shear layer, which is 
consistent with our assumption that the direction parallel to the edge is homogeneous 
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and simple geometric consideration may be used to obtain the growth rate in an 
arbitrary direction. From their experimental results, the ratio of the spreading rates 
between the two cases is approximately 0.70, which is very close to our estimation. 

It was found that for a plane mixing layer, the maximum amplification rate of the 
linear stability analysis can predict the spreading rate of the turbulent mixing layer 
observed in experiments (Dimotakis 1991). Since the effective velocity ratio h agrees 
very well with the maximum amplification rate, as shown in figure 7, we expect that the 
effective velocity ratio can be used to predict the amplification rate of the skewed 
mixing layer. Similarly the collapse of data from different Mach numbers onto a single 
curve in figure 16 suggests that the compressibility effect can be estimated by using only 
the effective convective Mach number. 

6. Conclusions 
The inviscid instability of a skewed mixing layer is studied in this paper. The laminar 

mean flow in a skewed mixing layer reduces to the sum of a uniform flow and a two- 
dimensional mixing layer with the same temperature (density) ratio, a different velocity 
ratio and a different convective Mach number. The temporal stability problem reduces 
to an equivalent planar temporal problem, but the spatial problem does not reduce to 
an equivalent planar spatial analogue. 

For the spatial stability problem, we define an effective velocity ratio which can be 
used to estimate the amplification rate of an incompressible skewed mixing layer. 
Skewing the two free streams can increase the amplification rate of the incompressible 
mixing layer by a factor of three for U,  = 0.5 and T, = 1. The enhancement is nine fold 
for U, = 0.75 and & = 1. 

For the compressible skewed mixing layer, we found that the effective convective 
Mach number can be used to estimate the normalized amplification rate. Skewing 
increases the amplification rate for the compressible mixing layer with medium 
convective Mach number ( M ,  < 0.8). However, for very high convective Mach 
number, skewing decreases the maximum amplification rate. 

This work was performed under grant AFOSR-91-0374 monitored by Dr J. 
McMichael. The computations reported in the paper were performed on the NAS 
Facility at NASA-Ames. We appreciate helpful comments of Mr S. Scott Collis on a 
draft of this paper. We also thank the referees for their helpful comments. 
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